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Abstract

Neurodegenerative diseases manifest different motor and cognitive signs and symptoms that are

highly heterogeneous. Parsing these heterogeneities may lead to an improved understanding of underly-

ing disease mechanisms; however current methods are dependent on clinical assessments and somewhat

arbitrary choice of behavioral tests. Herein, we present a data-driven subtyping approach using video-

captured humanmotion and brain functional connectivity (FC) from resting-state (rs)-fMRI. We applied

our framework to a cohort of individuals at different stages of Parkinson’s disease (PD). The process

mapped the data to low-dimensional measures by projecting them onto a canonical correlation space

that identified three PD subtypes: Subtype I was characterized by motor difficulties and poor visuospa-

tial abilities; Subtype II exhibited difficulties in non-motor components of activities of daily living and

motor complications (dyskinesias and motor fluctuations); and Subtype III was characterized by pre-

dominant tremor symptoms. We conducted a convergent validity analysis by comparing our approach
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to existing and widely used approaches. The compared approaches yielded subtypes that were ade-

quately well-clustered in the motion-brain representation space we created to delineate subtypes. Our

data-driven approach, contrary to other forms of subtyping, derived biomarkers predictive of motion

impairment and subtype memberships that were captured objectively by digital videos.

Keywords: Parkinson’s disease, subtyping, functional connectivity, human motion analysis, canon-

ical correlation analysis, digital biomarkers

1 Main

Neurodegenerative diseases, including Parkinson’s disease (PD), are highly heterogeneous in their clini-

cal manifestations. Deciphering the variable expression in individuals may reveal clues to the underlying

disease mechanisms [17, 41]. In this work, we aimed to identify sources of this heterogeneity from a

data-driven perspective by directly studying movement from videos and brain function from resting-

state functional MRI (rs-fMRI) analysis. Accordingly, we developed a subtyping approach that groups

individuals based on raw motion and brain functional connectivity (FC) data. Joint analysis of these

two modalities of data offers a comprehensive perspective on the intricate link between brain function

and movement impairments [56, 49, 10]. Leveraging the recent advances in Artificial Intelligence (AI) for

encoding 3D human motion from videos [15, 30] and brain connectivity patterns from rs-fMRI [38], we

correlated motor-brain encodings to develop precise subtypes. Such a subtyping scheme could enhance

diagnostic accuracy, elucidate diverse disease pathologies, foster the development of tailored therapeutic

interventions, and engender effective and individualized patient care. To demonstrate the capability of

the methods, we apply them to detect PD subtypes and individualized biomarkers.

Previous work on data-driven PD subtyping typically used cluster analysis derived from clinical

variables, such as motor and non-motor symptoms and signs observed by neurologists, to determine

which combination of variables best differentiated the subtypes with the ultimate goal of evaluating

whether the clusters were meaningful and clinically interpretable [53]. Clinical variable clustering,

however, is known to be highly subjective [32, 14] even when this approach has moved past conven-

tional, rule-based methods. A common rule-based example divides people into tremor-dominant (TD)

or postural instability and gait difficulty (PIGD) subtypes based on the ratio of the mean Movement

Disorders Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) tremor scores to the mean

MDS-UPDRS PIGD scores (noted as TD/PIGD) [50, 54]. Recent works have included objective mea-

surements of data for subtyping such as biospecimen examinations, neuroimaging measures, genomic

data, neurophysiological assessments, and REM sleep behavior [60, 3, 7]. By contrast, our proposed

approach moved entirely away from clustering based on clinical variables and instead used objective,

raw motion and FC data (Figure 1(A)). Doing so enabled us (1) to build a latent space that correlated
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brain function with motion and mobility, thereby facilitating the identification of disease mechanisms,

and (2) to extract markers from gait videos and rs-fMRIs that correlated with disease severity and our

generated subtype assignments. In addition to the identified brain connectivity markers, the features

extracted from digital videos could serve as potential digital biomarkers, and their trajectory of changes

could be tracked with treatment or disease progression.

Our data-driven approach explored relations between motion features and FC subnetworks that

highlighted specific brain network disruptions associated with movement-linked impairments. When

applied to a cohort of individuals with PD at different levels of movement-impairment severity, our

method resulted in three clinical subtypes each characterizing different aspects of the disease such as

motor experiences of daily living, visuoperceptual abilities, tremor, non-motor aspects of daily living, and

motor complications of dopaminergic therapy (Figure 1(C)). In addition, we demonstrated convergent

validity by correlating our subtyping approach with existing subtyping approaches. Lastly, we derived

digital biomarkers for PD motor impairment and subtype membership based on motion and FC data.

2 Results

2.1 Motion features predictive of motor impairment severity

We used a Transformer-based model [15] pre-trained on motion forecasting to predict motor impairment

severity from videos of gait examinations, following our prior work [15]. This pre-trained method

accurately predicted gait impairment severity with an F1 score of 0.76, precision of 0.79, and recall of

0.75 (performance of 0.25 implies a random classifier). Its average AUC across the gait severity labels

(one-vs-rest) was 0.80 (see Table 1 and Supplementary Table 1. The benefits of this approach were (1)

it learned useful motion representations using motion forecasting as a self-supervised task leveraging

public motion capture datasets, and (2) it enabled joint training of the motion forecasting and gait

impairment score prediction branches that ultimately improved the extraction of meaningful motion

representations (i.e., the Motion Encoder in Figure 1). In the subsequent sections, we combined these

representations with FC features and built a low-dimensional latent space, in which these combined

representations were highly correlated.

2.2 Functional connectivity predicting motor impairment severity

We experimented with two approaches for choosing salient FC subnetworks that we combined with

motion features to generate subtype representations. The first approach used connections identified as

strongly correlated (two-sided p-value < 0.001 from Pearson correlation coefficient) with motor impair-

ment (MDS-UPDRS Section 3.10) in our dataset. The resulting five connections, listed in descending
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order based on their correlation with motor impairment, are as follows: Cerebellum 7b Left ↔ Lateral

Occipital Cortex inferior division Left, Cerebellum Crus1 Left ↔ Frontal Orbital Cortex Left, Cerebel-

lum 3 Right ↔ Heschl’s Gyrus Right, Cerebellum 6 Left ↔ Frontal Orbital Cortex Left, and Default

Mode Network LP Left ↔ Temporal Fusiform Cortex anterior division Right. In addition to the selected

connections, we used all FCs from across the whole brain and trained a simple neural Network (i.e.,

MLP) and a graph convolutional neural network (GCN) [29] to predict the gait impairment scores (see

Table 1). Compared to the other complicated methods, a simple model using these five connections

as input predicted motor impairment significantly better than the null hypothesis based on prediction

using a random classifier (in leave-one-out cross-validation settings).

The second approach only considered connections from subnetworks that were previously found to

have effects on motor outcomes based on the literature: the cerebellar-prefrontal network (connections

with motor planning and control) [35, 33, 18, 62], cerebellar-motor network (connections with gait speed,

balance, turning, and torso inclination) [2, 22, 39], and pallidal-sensorimotor network (connections with

dynamic gait features and sensorimotor integration) [28] (see Supplementary Information for more

information about the selection of these networks). The inclusion of this smaller set of connectivities

reduced the number of correlations to test. To maintain consistency with the first approach which

selected five connections, we chose the top five correlations from the three subnetworks to use as the

FC measures in the second approach. These five connections most correlated with motor impairment

were all from the cerebellar-prefrontal subnetwork. These top five connections were Cerebellum Crus1

Left ↔ Frontal Orbital Cortex Left, Cerebellum 6 Left ↔ Frontal Orbital Cortex Left, Cerebellum

Crus1 Left ↔ Frontal Orbital Cortex Right, Cerebellar Posterior ↔ Frontal Orbital Cortex Left, and

Cerebellum 6 Right ↔ Frontal Orbital Cortex Left. These top five connections for the second approach

highlight motion-linked impairments specific to the cerebellar-prefrontal network.

In addition, for each subnetwork, we evaluated how well a model could predict motor impairment.

Of the three subnetworks tested, the cerebellar-motor and cerebellar-prefrontal networks predicted the

motor impairment scores better than the setup where connections were randomly selected from across

the whole brain (p-value < 0.05 using Wilcoxon signed-rank test). Use of the five cerebellar-prefrontal

network connections most strongly correlated with motor impairment as input into the model resulted

in improved prediction accuracy compared to the use of the entire subnetwork. Results are summarized

in Table 1 (see Supplementary Table 1 for detailed results).

2.3 Motion-FC subtypes

After projecting the motion representations and FC subnetworks onto a canonical correlation space and

subtyping individuals based on their locations in this space (shown in Figure 1(B)), we examined the

characteristics of the resulting subtypes. We characterized the subtypes by identifying variables that
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exhibited significantly different expression levels across subtypes (p-value < 0.05 from Chi-square test

for categorical variables and from the Kruskal-Wallis test for continuous variables). The tested variables

included demographics (e.g., sex and age), MDS-UPDRS scores, cognitive tests (e.g., Montreal Cognitive

Assessment, MoCA, [37] and Judgment of Line Orientation, JLO, [5]), and extracted measurements from

gait videos, including walking time, walking speed, and average torso angle.

Subtype I was characterized by difficulties in motor abilities in daily living (including eating, per-

sonal hygiene, turning over in bed, walking/balance, and freezing from MDS-UPDRS Part-II), bradyki-

nesia/rigidity, and gait difficulties on the exam (including pronation-supination of hands, arising from

a chair, postural instability, and poor posture from MDS-UPDRS Part-III), and lower visuoperceptual

abilities as measured by the Judgment of Line Orientation (JLO) test [5]. Subtype II was marked by

difficulties in non-motor experiences of daily living (including increased depression and fatigue from

MDS-UPDRS Part-I) and more motor complications of dopaminergic therapy (including time spent

with dyskinesias, functional impact of dyskinesias, and functional impact of fluctuations between ON

and OFF medication states from MDS-UPDRS Part-IV). Subtype III exhibited predominant tremor

symptoms (including amplitude of rest tremor in upper and lower extremities and consistency of rest

tremor from MDS-UPDRS Part-III). Not surprisingly, there was also a significant difference in age

across the three subtypes, given that older age is a common factor in declining mobility [42]. The

traditional clinical variable-based subtyping approach also differed significantly in age across subtypes,

as summarized in Supplementary Figure 2. Previous work also found that age and onset age differ

across subtypes, as onset age is a traditional way of subtyping PD [60, 44]. A heatmap visualization

comparing mean values of the significant variables across subtypes is presented in Figure 1(C), and a

full comparison of distributions of significant variables across subtypes is displayed in Extended Data

Figure 1.

2.4 Convergent validity and subtype approach comparison

We assessed the convergent validity of our subtyping approach by measuring the correlation between our

subtyping and longstanding subtyping approaches using the metric σ, which measures within-cluster

variance in the representation space (see Figure 2(A)) created by our method. One of these approaches

computes cluster analysis on a broad selection of clinical variables, while the other approach uses tremor

and gait scores from MDS-UPDRS to classify individuals into subtypes. This comparison confirms that

the representation space (and hence the clusters) generated by our data-driven method align with

those produced by traditional subtyping approaches, demonstrating convergent validity. We further

qualitatively compared the subtype characteristics of our approach to the characteristics of the clinical

variable-based approach, outlined in the following subsections.
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2.4.1 Clinical variable-based subtyping

We first compared our approach to the common subtyping approach of conducting cluster analysis on

a set of clinical variables. We measured the correlation between the two approaches using the metric σ

and then compared this score to the correlation between our approach and random subtype groupings.

The conventional subtypes had a higher clustering in our representation space than 97.6% of random

individual groupings. This high correlation demonstrates that our generated representation space cap-

tured information about individuals that the conventional clinical variable-based subtyping approach

used to subtype. It also signifies that the conventional subtypes are meaningfully separated in our

representation space. Figure 2(A) includes a histogram of random group clustering scores, illustrating

that conventional subtypes are more highly clustered than the majority of randomly assembled group-

ings. The graphical visualization showing how well clinical variable-based subtypes are grouped in our

representation space is shown in Figure 2(B) top-row.

In addition, we qualitatively analyzed the similarities between the characteristics of this clinical

variable-based approach and our approach and found that the two approaches resulted in similar subtype

profiles. For example, Subtypes I in both approaches were described by motor impairment in activities

of daily living and poor motor exam. Additionally, Subtype III in both approaches exhibited overall

mild bradykinesia/rigidity and gait impairment but more rest tremor consistency. However, there were

differences between the characteristics of the two approaches. For example, Subtype II in the conven-

tional approach was characterized by low cognitive function as measured by the MoCA [37], California

Verbal Learning Test (CVLT) [12], and Symbol Digit Modalities Test (SDMT) [46]. In our approach,

Subtype I exhibited cognitive impairment as measured by JLO [5]. Generally, the clinical variable-based

approach contained many variables relating to cognition, whereas our data-driven approach contained

only one. Full subtype profiles for the clinical variable-based approach are in Supplementary Figure 2.

2.4.2 Conventional TD/PIGD subtyping

We additionally compared our approach with the conventional tremor-dominant/postural instability

and gait difficulty (TD/PIGD) subtyping approach. Using the same setup as the clinical variable-based

subtyping comparison, we found that TD/PIGD subtypes had a better clustering score than 99.9%

of random individual groupings. This outcome again supports the conclusion that the representation

space created by our entirely data-driven approach exhibits an interpretable space. As another measure

of convergence, we found that the TD/PIGD ratio variable exhibited significantly different expression

levels across our subtypes (p-value < 0.05). Lastly, we visualized the clustering of TD/PIGD subtypes

in our subtyping space of motion features in Figure 2(B) bottom-row. We found that the PIGD and TD

individuals were clustered on different sides of the representation space. As expected, the indeterminate

subtype was clustered in between the PIGD and TD subtypes.
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2.5 Subtype (digital) biomarker discovery

Next, we analyzed how masking individual joints by exclusion and removing functional connectivities

affected 1) the ability of models to estimate gait impairment severity and 2) subtype generation as

measured by subtype grouping similarity. This procedure identified the ‘impact’ or the importance of

each body joint or FC measure. For predicting gait impairment, masking the elbows had the greatest

negative effect on predictive performance, with masking of wrists and ankles also reducing predictive

performance. For subtyping, we found that movement of wrists, knees, and the spine had the most

effect on grouping individuals. On the FC side, out of the five connections used for subtyping, removing

the Default Mode Network-Fusiform Cortex connection had the greatest impact on final groupings.

Figure 3 contains visualizations of the statistical relevance of each joint and each FC effect on subtype

grouping.

We also calculated various metrics such as movement variability, velocity, and axis angle on the joints

that had the most effect on estimating gait impairment severity. We found that individuals with gait

impairment had significantly different expressions of selective motion variables than individuals without

gait impairment. For example, individuals with gait impairment had lower elbow rotational velocity,

lower wrist velocity, and lower ankle rotational velocity, but higher ankle z-axis movement variability.

The complete set of results is shown in Figure 3 with distributions displayed in Extended Data Figure 2.

3 Discussion

We designed an objective, data-driven subtyping approach derived from videos of individuals performing

clinical tests and from resting-state functional MRIs to identify factors that contribute to movement-

linked heterogeneity of neurodegenerative diseases. Instead of subtyping based on a subjective selection

of variables recorded by clinicians, our work was grounded in inherent differences in PD expression

acquired through features from motion and FC data. Correlations between these two sets of features

were used to generate a readily interpretable representation space (Figure 2(B)) for subtyping. Thus, the

subtypes were built upon motor-brain links discovered in the data without requiring clinician input. We

hypothesize that these motor-brain links account for substantial variance in defining PD heterogeneity.

Our data-driven approach resulted in newly identified digitally trackable biomechanical markers that

can be continuously monitored (Figure 3(B)) and deployed in a mobile app. With continuous monitoring

of gait markers, patients could potentially receive individualized feedback directed by changes in their

motor-brain links [20].

When applied to a cohort with clinical PD diagnosis, our modeling identified novel PD subtypes with

distinct characteristics completely in a data-driven fashion (Figure 1(C)). Subtype I was characterized

by difficulties in motor activities of daily living, poor motor test performance, and compromised vi-
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suoperceptual abilities; Subtype II exhibited difficulties in non-motor aspects of daily living and salient

motor complications of dopaminergic therapy; and Subtype III was characterized by tremor but oth-

erwise lowest symptom severity. Age was also a significant spectrum characteristic, where Subtype I

was an older cohort and Subtype II was a younger cohort. A similar pattern held with onset age where

the first subtype had an older onset age, the second subtype had a younger onset age, and the third

subtype had an onset age in between the first and second subtypes (see Extended Data Figure 3). Using

onset age is another traditional way of PD subtyping [44]. In line with previous literature, we observed

that the second subtype (with the youngest onset age) exhibited the most depression and had a high

frequency of treatment-related dyskinesia [34]. Also consistent with prior studies, our Subtype I had

the latest age onset and presented a more severe motor phenotype than other subtypes [40]. Although

previous work reported that tremors become more common with older onset age, our Subtype III, which

had age onset between the other two subtypes, was the group with the greatest tremor symptoms [58].

Age was not a strong correlate of disease severity, as Subtype III had the mildest observed symptom

severity despite being older than Subtype II. We observed that the youngest subtype had more motor

complications of dopaminergic therapy, consistent with prior studies [55]. Critically, disease duration

was not a defining characteristic of our subtyping approach (p-value = 0.112), demonstrating that our

work was revealing heterogeneous subtypes and not solely different disease stages. Disease duration

only became significant in its interaction with age through onset age. The motor impairment severity

score measured clinically with MDS-UPDRS Section 3.10 that we used to train the motion model and

choose FC subnetworks was also not a defining characteristic (p-value = 0.423).

We demonstrated the convergent validity of our approach by measuring its correlation with existing

subtyping approaches. Both clinical variable-based and TD/PIGD subtyping approaches exhibited a

high correlation with our approach as measured by their clustering scores in our representation space

(Figure 2(A)). This high clustering demonstrated that our low-dimensional representation space cap-

tured clinically relevant components of PD heterogeneity. Despite the high clustering of traditional

subtyping approaches in our representation space, our approach used different criteria from other ap-

proaches. As such, our subtyping yielded groupings of individuals that were notably distinct from those

of the conventional subtyping approaches. As seen in Figure 2(B,C), subtypes of our approach were

partitioned into the bottom left, bottom right, and top regions of the subtyping space whereas the

clinical variable-based subtypes were roughly partitioned into the bottom, middle at top regions and

the TD/PIGD subtypes were partitioned into the bottom and top regions.

Qualitatively comparing the subtype characteristics of our approach and the clinical variable-based

approach revealed that the two approaches shared many characteristics. For example, the first subtype

in both approaches exhibited more motor difficulties, and the third subtype displayed overall less severe

symptom expression. However, the clinical variable-based approach had more differentiated variables,
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particularly related to cognition. Our approach based on video motion data and brain functional pat-

terns only resulted in one cognitive test (JLO [5]) with significantly different scores across subtypes,

whereas the clinical variable-based approach had 11 differentiated cognitive tests (MoCA, BVMTR,

CVLT, JLO, HVOT, SDMT, FAS, Animals, Trails, SCWT, and BNT [37, 4, 12, 5, 23, 46, 47, 43,

6, 48, 26]). Although the clinical variable-based approach captured cognitive impairments to a high

degree, it did so by directly using these cognitive tests to subtype patients, thereby using the cognitive

grouping as both a dependent and independent variable. Overall, our findings demonstrate the effec-

tiveness of the data-driven approach combining learned motion features from gait examination videos

with function connectivities for discovering motor-brain links independent of predetermined groupings

or comprehensive clinical examinations. Thus, our approach provides a valuable method for objectively

exploring PD heterogeneity, which could be simply extended to the analysis of different neurodegenera-

tive diseases. Whether the constellations of cognitive test sensitivity change with advancing disease or

evolving dementia disorders remains to be tested with longitudinal data.

Our data-driven approach enabled the discovery of digital mechanobiomarkers relating to joint move-

ment and imaging neurobiomarkers associated with functional connectivities (Figure 3):

• Motion: Our method found that elbows, wrists, and ankles had a high impact on predicting

gait impairment, whereas elbows, knees, and the spine had the most effect on ultimate subtyping

assignments. In addition to examining the overall effect of joints on motor impairment protection

and subtype assignment, we tested the hypothesis that models learn patterns of joint movement

and rotation to discern PD gait impairment severity (Extended Data Figure 2. Supporting this

hypothesis, individuals with gait impairment had lower elbow and ankle rotation velocity, which

comports with previous research showing that PD reduces the total excursion of elbow and ankle

motion [36]. These walking patterns may be critical for recognizing gait impairment, and masking

these joints attenuated the model’s predictive abilities. Note that our motion model learned from

automatically generated skeleton estimations of individuals extracted from raw videos instead

of precise motion capture data, which makes the method plausible for use in simple home or

clinical settings. Further, our analysis found that individuals with gait impairment had higher

foot lift (ankle z-axis movement variability), but previous research noted that individuals with PD

have lower heel elevation [36]. One possibility is that the high footlift we observed in individuals

with gait impairment was due to less smoothness (greater jittering) of recovered poses for those

individuals [30].

• FC: As illustrated in Section 2.5 and Figure 3(B), our approach identified the FC between the

Default Mode Network (DMN) Lateral Parietal (LP) Cortex Left and the Temporal Fusiform Cor-

tex anterior division Right as the most significant contributor to our subtyping scheme. While

the correlation between DMN disconnection and cognitive dysfunction in individuals with PD is
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widely established [13], the full extent and nature of DMN function in PD, especially in aspects

beyond cognitive function, remains unclear [61]. As PD individuals with primary akinetic/rigidity

are likely to develop cognitive deficits, previous works have examined changes in the DMN between

different motor subtypes [27]. For example, a study found that compared to healthy controls, PD

individuals with akinetic rigidity that are still cognitively unimpaired exhibited prominently de-

creased connectivity between the posterior DMN (encompassing the lateral parietal cortex) and

the fusiform gyrus [24]. Our data-driven approach identified this same connectivity constellation

as a distinguishing element among our subtypes. Given our generated subtypes were characterized

by numerous motor differences, our finding that the DMN-Fusiform Cortex connection had the

greatest impact on subtype groupings is intriguing. This is validated by the literature that the

fusiform cortical role in processing complex visual information can be directly related to mobility

and gait, as effective navigation through an environment requires recognizing and interpreting var-

ious visual cues. Additionally, the DMN, while typically less active during physical tasks, interacts

with networks that control attention and the executive function [8, 21]. These functions are essen-

tial for planning movements, making decisions about where to go, and how to navigate obstacles.

Disruptions in the DMN have been associated with difficulties in attention and memory, which can

indirectly affect mobility and gait [11]. More targeted research is required to further unravel the

complexities of DMN dysfunction in PD, particularly relating to tremors, gait difficulties, and psy-

chiatric disturbances. The other four connections used for subtyping all involved the cerebellum.

Previous work has found PD-related pathological changes in the cerebellum, and these changes

related to akinesia/rigidity, tremor, gait disturbance, dyskinesia, and some non-motor symptoms

[59]. Complementary to these findings, our data-driven analysis identified the cerebellar-occipital

connection as the connection with the highest correlation with gait impairment severity.

One limitation of our work was the reliance on collecting gait impairment severity scores for training

the motion encoder and choosing salient FC subnetworks. Presumably, using this gait impairment sever-

ity score to train our motion encoder and dictate FC subnetwork selection also increased subjectivity

as the score is based on one aspect of PD expression and is recorded by a clinician. Another limitation

was that our approach used fMRI scans for subtyping individuals, which required specific machinery

and trained medical staff for data collection. This study further requires access to longitudinal data

to track the change of subtype assignments, treatment utility, or disease progression over time, which

defines directions for future work. In addition, since we employed modality-specific feature extractors

for motion and brain FC data and later projected them in a shared space, we could not explore deeper

connections between motion and fMRI biomarkers. Using data-driven approaches such as AI algorithms

on smaller-scale datasets, particularly in the setting of neurodegenerative disease, presents challenges

such as the potential to overfit. To address these challenges, in this work, we (1) first pre-trained our
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motion encoder on a large-scale public 3D motion capture dataset to learn useful motion representations,

(2) followed a leave-one-out cross-validation setup, and (3) chose a simple method for the modeling of

functional connectivity. As a result, this work demonstrates how to make use of large-scale public

motion capture datasets to translate the knowledge for modeling motion for clinical applications.

In conclusion, we subtyped individuals with PD according to their representations based on motion

and FC data. With our data-driven approach, the resulting subtypes defined characteristics that were

readily interpretable and exhibited convergent validity without relying on extensive clinical testing.

Finally, use of raw data led to the discovery of digital mechanobiomarkers defining PD gait impairment

severity and objective PD subtyping.

4 Methods

4.1 Participants and dataset

We acquired 31 samples of rs-fMRIs, video recordings of MDS-UPRDRS part 3 exams, MDS-UPDRS

part 1-4 scores, and cognitive test scores from participants with a PD diagnosis. Specifically for section

3.10 of the MDS-UPDRS exam (gait impairment severity), we had three board-certified movement

disorders neurologists score each video recording (details explained in [32]). In this section of the exam,

participants were recorded from the frontal perspective. They were instructed to walk at least 10

meters towards the camera, then turn around and walk back. According to the MDS-UPDRS criteria,

the neurologists scored gait impairment based on many behaviors including stride amplitude, stride

speed, the height of foot lift, heel strike during walking, turning, and arm swing [19]. We additionally

obtained gait video recordings from several control non-PD subjects, of which we selected 23 who were

frequently matched by age and sex with the PD cohort. For Sections 2.3, 2.4, and 2.5, we excluded one

example as it was missing MDS-UPDRS part 1-4 scores. All data collection procedures were approved

by the Stanford IRB and all individuals consented to participating in the study. In collecting, processing,

and analyzing the data, we complied with all relevant ethical regulations. Score distribution and other

information about the study participants are included in Table 2 and Extended Data Figure 4. To

pre-train our motion encoder, we used NTU RGB+D dataset [45], which contains 3D skeletal data for

56,880 video samples.

4.1.1 Data preprocessing

Videos. The sections of the videos documenting gait examinations were selected where participants

are instructed to walk directly toward and away from the camera. Due to the difficulty of obtaining

video recordings for participants with extreme motor impairment, we combined gait impairment scores

3 and 4. In order to extract 3D skeletons from videos of gait examinations, we utilized Video Inference
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for Body Pose and Shape Estimation (VIBE) [30]. This method estimates 3D human meshes from

videos and regresses them to skeletons with 49 predefined joints. We utilized 17 of these joints which

correspond to NTU joints used to pre-train the Transformer-based motion encoder [15]. Note that these

extracted 3D skeletons from videos are subject to estimation errors compared to approaches such as

multi-camera setups or motion capture systems based on Inertial Measurement Units. However, our 3D

estimation algorithms exhibited reliable results after manual inspection of the reconstructed 3D meshes,

providing a contactless and affordable approach for recording movement in everyday clinics. From the

3D human meshes, we additionally extracted rotational angles in the form of relative rotation of joints

in axis-angle format which were used in Section 2.5.

rs-FMRIs. For each individual, pre-processed functional connectivity (FC) matrices were obtained

using a combined Harvard-Oxford and AAL parcellation atlas [57] with 165 regions of interest (ROIs),

where each the (i, j)th entry in the matrix is the Pearson correlation between the average rsfMRI signal

measured in ROI i and ROI j. The FC matrices were corrected for possible motion artifacts using the

CONN toolbox [57].

4.2 Data-Driven Motion-FC PD subtyping

4.2.1 Motion encoder

The motion representations reduced the videos of individual’s gait examinations to a vector using a deep

neural network trained on various motion prediction tasks. We used intermediate model representations

for subtyping. Specifically, we began by training a model on the task of human motion forecasting using

large-scale public 3D motion capture data. In this task, representations of past movements were used

to forecast future movements. Specifically, given a sequence of t 3D skeletons x1:t, a model predicted

the next M skeletons xt+1:T . We used recent advances in computer vision and developed an encoder-

decoder Transformer model. We had previously shown that the model could learn useful representations

from motion forecasting of public motion dataset that can be applied to the task of gait impairment

severity estimation [15]. In short, an encoder took as input a sequence of skeleton representations and

computed intermediate, latent representations. Then, the intermediate representations were fed into a

decoder to output future skeleton predictions.

We then fine-tuned the model on videos of gait examinations, additionally predicting the gait severity

impairment score by feeding the intermediate representations through a simple linear classifier. Note

that fine-tuning refers to the process of adapting the trained model to our application, translating the

technology to the specific clinical application of interest.
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4.2.2 FC encoder

The FC component also comprised an encoder that reduced the fMRIs to a vector by selecting sub-

networks that are highly correlated with motor symptoms of PD (within cross-validation settings). We

followed two different approaches for selecting relevant subnetworks for subtyping. In the first approach,

we determined how correlated each connectivity in the rs-fMRI data was with gait impairment severity

by calculating Pearson’s correlation coefficients. We then selected connections for subtyping that had

an associated p-value of less than 0.001. In the second approach, we took note of previous literature that

discusses how certain subnetworks of the brain have effects on various motor outcomes and only consid-

ered connections in particular subnetworks. Based on previous literature, we looked at connections from

the cerebellar-prefrontal network, cerebellar-motor network, and pallidal-sensorimotor network. To an-

alyze the relevance of each subnetwork for motor impairment, we trained a model for each subnetwork

that had subnetwork connections as input and predicted gait impairment severity using a simple Multi-

Layer Perceptron (MLP). We used a leave-one-out cross-validation setup and trained each fold for 100

epochs. For the whole-brain setup, we additionally used a Graph Convolutional Network (GCN) [29].

Looking into more detail about individual connections instead of entire subnetworks, we also analyzed

how highly correlated individual connections are with motor impairment. We found that out of the top

5 connections most correlated, all were from the cerebellar-prefrontal network. We used these top 5

connections as brain features in the second approach.

To further demonstrate that FC data contains detectable patterns that can be learned to accurately

predict PD motion impairment, we utilized our recent geometric attention-based model (xGW-GAT)

[38] for gait impairment severity estimation. This method represented brain connectivities as a learnable

graph structure to characterize discriminative attributes of edge encodings for gait impairment severity

estimation. The method used a stratified, learning-based sample selection method to mitigate the small

dataset size and label imbalance. Note that this method followed a transductive learning [25] approach,

so intermediate representations were not generalizable to other tasks such as subtyping. Therefore, we

used the simpler and more interpretable approach of selecting FC subnetworks as our representations

used for subtyping.

4.3 Subtype clustering

Given motion and brain representations, we created individual representations by using canonical cor-

relation analysis (CCA) [51] to get low-dimensional, correlated motion and FC features. In our work,

we used two components from motion and FC features, adding up to a combined representation space

of 4 dimensions. With these features, we then generated subtypes by grouping CCA representations

using k-means clustering. We utilized the standard Lloyd’s algorithm version of k-means clustering [31]

13



with initial clusters chosen using k-means++ [1]. In the assignment step, each individual was assigned

to the cluster with the closest centroid (least squared Euclidean distance). Mathematically, we denote

cluster assignment for cluster Ci as

Ci = {l : ∥xl − µi∥2 ≤ ∥xl − µj∥2∀j, 1 ≤ j ≤ k},

where each l is an individual, x is a matrix representing the CCA features for all individuals, µ is

a matrix representing cluster centroids, and ∥ · ∥ is the ℓ2 norm. In the update step, the centroids

were recalculated for each cluster Ci as µi =
1

|Ci|
∑

l∈Ci
xl. This technique attempted to minimize the

within-cluster sum of squares (variance), which is denoted as

σ(C) =

k∑
i=1

∑
l∈Ci

∥xl − µi∥2.

For generating subtypes, we calculated the optimal number of clusters using Hartigan’s rule with a

threshold of 12 following [9] (see Supplementary Figure 7 for a visualization of σ scores and Hartigan’s

statistic values as the number of subtypes increases). Along with using σ to generate subtypes, we also

used σ as a metric for how well any given subtype grouping D was clustering according to our generated

motion/fMRI representation space, represented as σ(D).

For calculating which clinical variables were differently expressed among subtypes, we used chi-square

tests for categorical variables and Kruskal-Wallis tests for non-normal continuous variables, following

[60].

4.4 Motion-FC subtype characteristics

For determining subtype characteristics, we identified variables that exhibited significantly different

expression levels (p-value < 0.05) across subtypes. For categorical variables (e.g., medication state,

dyskinesia) and ordinal variables with no more than five categories (e.g., gait, posture), we used the

Chi-square statistical test. Meanwhile, for continuous variables (e.g., age, PIGD/TD) and ordinal

variables with more than five categories (e.g., MoCA, MDS-UPDRS Part-I), we used the Kruskal-Wallis

statistical test. For variables that exhibited significantly different expression levels according to these

tests, we also displayed subtype z-scores in Figure 1(C). A subtype z-score for subtype i is defined

as µi−µ
σ

, where µi is the variable mean value for the subtype, µ is the variable mean value across all

subtypes, and σ is the variable standard deviation across all subtypes.
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4.5 Subtype (digital) biomarker discovery

To analyze the importance of each joint in model prediction and subtype generation, for each joint, we

set its value to 0 across all frames and trained the deep learning model to predict motor impairment. We

followed a similar approach for FC data by removing each connection. We measured the effect of each

joint/connection on the model’s predictive ability by subtracting the model’s F1 score with the masked

joint/connection from the model’s F1 score using all data. For the subsequent subtype generation, we

used a clustering similarity metric [52] to determine how much masking joints/connections affect subtype

clustering. Specifically, we define subtype groups from our approach as C = {C1, C2, ..., Cm} and the

subtype groups from the modified approach which masks a joint/connection as D = {D1, D2, ..., Dn}.

We then define the similarity matrix for C and D as

SC,D =



S11 S12 ... S1n

S21 S22 ... S2n

...
...

. . .
...

Sm1 Sm2 ... Smn


where Sij is Jaccard’s Similarity Coefficient or p/q where p is the size of intersection and q is

the size of union of the sets Ci and Dj . The similarity of groupings C and D is then defined as

Sim(C,D) =
∑

i≤m,j≤n Sij/max(m,n). We calculated the effect of joint/connection masking as sub-

group dissimilarity or 1− Sim(C,D).

Data availability

We provided a toy dataset of select motion encoding outputs and fMRI subnetworks with our code

release [16]. To protect study participant privacy, we are unable to release the clinical data or the gait

examination videos. The NTU RGB+D dataset [45] used to pre-train the motion encoder model is

available at https://rose1.ntu.edu.sg/dataset/actionRecognition/.

Code availability

We have released code for subtype analysis and predicting motor impairment using FC data [16]. The

previously published code for the GaitForeMer motion encoder is available at https://github.com/

markendo/GaitForeMer.
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Table 1: Results on how accurately human motion (video) or FC (rs-fMRI) data can be used to predict
motor impairment. We followed a leave-one-out cross-validation approach. Note that the reported video
motion analysis results additionally include control data. For FC data, we used a simple MLP for predictions
and averaged results across 20 runs. The 100 Random connections are chosen from the whole brain 20 times,
creating a null hypothesis as a baseline for comparisons. Out of the three tested subnetworks, the cerebellar-
prefrontal network exhibited the highest predictive ability of motor impairment. Going beyond connections
from the cerebellar-prefrontal subnetwork and using connections from across the whole brain, with both
MLP and GCN [29], yielded similar performance. * indicates significantly better than chance (p-value < 0.05
using one-sided Wilcoxon signed-rank test). The p-values for the cerebellar-motor, cerebellar-prefrontal, top
5 cerebellar-prefrontal, and top 5 whole-brain setups were 0.029, 9.54× 10−7, 9.54× 10−7, and 9.54× 10−7,
respectively.

Approach Average AUC (one-vs-rest)

Video motion analysis* 0.804
Functional networks (× 20 Runs)

Pallidal-sensorimotor (2×3 connections) 0.427
Cerebellar-motor (20×3 connections)* 0.519

Cerebellar-prefrontal (20×5 connections)* 0.628
Individual functional connections (× 20 Runs)

100 Random 0.455
Whole-brain (MLP) 0.495
Whole-brain (GCN) 0.483

Top 5 Cerebellar-prefrontal* 0.735
Top 5 whole-brain* 0.742

Table 2: Details about individuals used in this study. We group participants with PD diagnosis by their
MDS-UPDRS 3.10 score (gait impairment severity). Walking time represents the total time an individual
walked in the exam, double support time denotes the amount of time where both feet were on the ground,
% double percentage represents the percentage of the time walking where the participant had both feet on
the ground, and average torso angle denotes the angle of the vector from the participant’s spine to their
neck from the ground. The Healthy/Control (CTRL) group is used to additionally validate our subtyping
approach (visualized in Supplementary Figure 6). The last column shows the difference between the PD
and CTRL groups with respect to the extracted measurements from the gait videos. Comparisons are done
using a two-sided t-test (p < 0.05). The p−values for Walking Time, Double Support Time, and Average
Torso Angle are 2.86×10−10, 0.001, and 1.79×10−4, respectively. A full comparison of cohort distributions
for extracted motion measurements is displayed in Extended Data Figure 4.

Diagnosis PD
CTRL PD vs. CTRL

Gait impairment score All 1 2 3
N (total = 54) 31 14 13 4 23 -
Sex (F / M) 13 / 18 4 / 10 7 / 6 2/2 12 / 11 -
Age (mean ± std) 69.0 ± 7.0 67.6 ± 6.2 68.4 ± 8.0 75.7 ± 1.1 67.9 ± 12.8 -
Walking Time (sec) 29.5 ± 8.9 28.9 ± 6.5 29.1 ± 9.7 32.6 ± 14.2 13.9 ± 4.3 PD > CTRL
Double Support Time (sec) 6.0 ± 4.3 6.7 ± 4.3 6.0 ± 4.9 3.5 ± 1.2 2.8 ± 1.7 PD > CTRL
% Double Support 19.8 ± 11.6 22.3 ± 11.9 19.7 ± 12.2 11.49 ± 4.3 19.2 ± 8.3 PD = CTRL
Average Torso Angle 83.9 ± 5.2 84.1 ± 6.0 85.0 ± 4.0 79.7 ± 4.7 88.7 ± 2.6 PD < CTRL
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Figure Legends/Captions

Figure 1: Our data-driven Parkinson’s disease subtyping using motion (from videos) and

brain functional connectivity (from rs-fMRI). (A) Generating low dimensional features using

Canonical Correlation Analysis (CCA) from motion and functional connectivity representations. (B)

PD subtyping using the generated low-dimensional features. The plot shows the clustering of our

subtypes in two dimensions using principal component analysis (PCA) of our representation space.

(C) Visualization of clinical variables that exhibited statistically significant (p-value < 0.05) levels of

expression between the three subtypes as measured by the Chi-square test for categorical variables and

the Kruskal-Wallis test for continuous variables. Colors are generated according to the corresponding

variable mean values of subtypes. The blue color signifies that the mean value of a variable for that

subtype was higher than the mean across the whole cohort. The red color signifies that the average

variable value for that subtype was lower than the mean across the whole cohort. A darker color denotes

a larger difference between the subtype mean and the overall mean.

Figure 2: Subtype approach comparison. (A) Histogram of clustering scores (σ) for random cohort

groupings in our motion/fMRI representation space with clinical variable-based subtyping, TD/PIGD,

and our subtyping σ scores also plotted. A lower σ score signifies better clustering. Note that our

subtypes were generated by minimizing this clustering score. (B) Visualization of how well fig:td/pigd

subtypes and clinical variable-based subtypes are clustered in our subtyping space. CCX signifies the

motion component of our space while CCY signifies the fMRI component. For CCX, each oval represents

a single individual since there are multiple data points per individual. (C) Visualization of our subtype

clustering.

Figure 3: Subtype (digital) biomarker discovery. Visualization of joint impact on (A) model

ability to predict gait impairment and (B) subtype generation measured by subtype grouping similarity.

We display joints in purple that have an impact score in the top 25%. The radius of the joint is

proportional to the joint importance. For joints on the left and right sides, we take the maximum joint

impact on either side to avoid discriminating between the left and right sides. For gait impairment

prediction, we also calculate various motion metrics for the joints having the greatest effects in the

model. Metric values underlined in green are for individuals without gait impairment (score 0, N = 9)

and values underlined in orange are for individuals with gait impairment (scores 1-4, N = 45). Metrics

with a significant difference between individuals with and without gait impairment (two-sided p-value

< 0.05 from t-test) are displayed. For (B), we also visualize the impact of fMRI connections, where the

width of the fMRI connection is proportional to the connection’s impact on subtype grouping. Nodes

are colored according to subnetwork region.
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1 Brain pathways’ link to motor impairment
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Cerebellar-prefrontal network:
motor planning, control

Cerebellar-motor network:
gait speed, balance, 
turning, torso inclination 

Pallidal-sensorimotor network:
dynamic gait features, 
sensorimotor integration

Supplementary Figure 1: Brain pathways related to motor outcome effects, including the cerebellar-
prefrontal, cerebellar-motor, and pallidal-sensorimotor networks.

In Section 2.2, we identified and studied specific subnetworks that have been found to affect motor

outcomes. The subnetworks we inspected were the cerebellar-prefrontal, cerebellar-motor, and pallidal-

sensorimotor networks, identified based on the literature. Previous studies have uncovered cerebellar-

prefrontal circuit involvement in various motor-related diseases and disorders. Ataxia in individuals with

alcohol use disorder (AUD) is accompanied by cerebellar-frontal hyperconnectivity [6]. Cerebellar-prefrontal

cortex pathways have shown an effect on autism spectrum disorders (ADSs) which are often accompanied

by motor difficulties such as slow and repetitive hand and foot movements, slow and inaccurate dexterity,

unstable balance, and impaired gait [5]. Cognitive impairments that correspond to the type of motor

predominance in the cerebellar type of multiple system atrophy (MSA-C) reflect prevailing involvement of

cerebellar-prefrontal circuits [3]. Children with developmental coordination disorder (DCD) demonstrate

under-activation in the cerebellar–prefrontal network compared to typically developing peers [10]. Similarly,

several previous studies have shown that the cerebellar-motor network has relevance to motor outcomes,

especially for Parkinson’s disease. One work found that compared to controls, PD individuals presented

decreased stepwise functional connectivity in the sensorimotor network [1]. In another study, PD-related

motor impairment severity was predicted by a combination of cerebellar atrophy and decreased cerebellar-

sensorimotor connectivity [8]. Lastly, abnormalities in FC between pallidal-sensorimotor pathways in PD

freezers compared to non-freezers have been reported [4].
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2 Predicting motor impairment

Supplementary Table 1: Predictive ability of gait impairment severity using either human motion (video)
or FC (rs-fMRI) data. The model using human motion extracted skeleton and joint positions over time
from videos. It used a motion encoder (based on our novel Transformer architecture [2]) to predict the gait
impairment severity. The rs-fMRI top subnetwork approach used the five connections in the cerebellar-
prefrontal network most correlated with gait impairment severity and used a simple multilayer perceptron
(MLP) for prediction. The rs-fMRI top whole-brain approach input the five connections in the entire
brain most correlated with gait impairment severity and used the same MLP for prediction. The rs-fMRI
whole-brain approaches input all connections from the brain and either use an MLP or GCN for prediction.
xGW-GAT is a weighted-graph attention neural network [7]. * indicates statistical difference by one-sided
Wilcoxon signed-rank test at (p < 0.05) compared to a random classifier (area under the curve, AUC = 0.5)
[9]. The p−values for the rs-fMRI - top subnetwork and rs-fMRI - top whole-brain are both 9.54× 10−7.

Approach F1 Score Precision Recall AUC (one-vs-rest)
video - motion analysis [2]* 0.764 0.792 0.753 0.804
rs-fMRI - top subnetwork* 0.462 0.530 0.571 0.735
rs-fMRI - top whole-brain* 0.478 0.488 0.605 0.742
rs-fMRI - whole-brain - MLP 0.315 0.296 0.340 0.495
rs-fMRI - whole-brain - GCN 0.302 0.295 0.320 0.483
rs-fMRI - xGW-GAT [7]* 0.760 0.750 0.770 0.830
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3 Comparison With Other Subtyping Frameworks

Subtype 
z-score

Clinical variable-based subtyping

Supplementary Figure 2: Heatmap visualization of differentiated clinical variables from the conventional
clinical variable-based subtyping.

Subtype 
z-score

Subtyping based on second FC approach

Supplementary Figure 3: Heatmap visualization of differentiated clinical variables from subtyping based on
the second FC selection approach explained in Section 2.2.
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Subtype 
z-score

TD/PIGD subtyping

Supplementary Figure 4: Heatmap visualization of differentiated clinical variables from the TD/PIGD
subtyping approach.

Subtype 
z-score

Gait impairment score subtyping

Supplementary Figure 5: Heatmap visualization of differentiated clinical variables from the subtyping based
on gait impairment severity score.
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4 Control Group Analysis

CCX 1

CC
X 

2

Our subtype
Subtype I
Subtype II
Subtype III
Control

Supplementary Figure 6: Visualization of where controls (individuals without PD) are located in our subtype
embedding space compared to other subtypes. We found that controls are clustered roughly together in
the representation space between Subtype II and Subtype III. Its close proximity to Subtype II is logical as
this subtype exhibited less overall symptom severity.

5 Number of Subtypes Selection
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Supplementary Figure 7: Visualization of σ scores and Hartigan’s statistic values as the number of subtypes
increases. We found that the optimal number of subtypes is three when using a threshold of 12 for Hartigan’s
rule.
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